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Critical Exceedance Probabilities

0001 / 14,000> 1 / 30Geometry

0001 / 361 / 20Geometry + 
Material

Normal 
B-Value

Weibull 
B-Value

MeanNormal 
B-Value

Weibull 
B-Value

MeanVariability

GIIC [in-lbs/in2]GIC [in-lbs/in2]

* MIL-HDBK-17 statistical procedures used.

Probability of crack tip force exceeding GIC or GIIC at 90 lb/in.

Large variations in coupon measured fracture strengths 
will complicate test prediction. 

Robustness to Flaws, Geometric and Material Variability
Quantifying Uncertainty
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Load Exceedance Probability

For continuous distributions, 
the probability of failure is:

FG,SUBLAM is the CDF of 
expected SERRs for the HSP 
system 
fG,exper is the PDF of the 

experimental data.  

0
f G,sublam max G,exper max cp F (G )f (G )dG

∞

=∫  

GI

Probability

Robustness to Flaws, Geometric and Material Variability
Quantifying Uncertainty
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Comparison to Distributions of GIC and GIIC (Left) and Pull-off Load (Right)
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Pull off load = 80 lb/in

Robustness to Flaws, Geometric and Material Variability

Interaction Criteria 1 Interaction Criteria 2

Quantifying Uncertainty
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Pull-off Failure Load Statistics

75.180.5n = 10 (typical number 
of experimental data )

91.699.8
n = 500
(simulation results)

n = 6 (current number of 
experimental data) 72.677.5

B-Values 
(lbs/in)

Weibull 
Distribution

4.905.82Standard Deviation

100110Mean (lbs/in)

Criteria 2Criteria 1

B-value Prediction Strongly Depends on Confidence in Input Data

Robustness to Flaws, Geometric and Material Variability
Quantifying Uncertainty
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Data from Knowledge, Analysis, and Test
Using previous knowledge

• Test, analysis, and fabrication/service experience of similar 
materials and concepts, Lessons Learned

• Prone to Epistemic error and mistakes
– 90% of the reports I’ve ever tried to directly use are missing at least 

one key piece of information that is required for my application.
– Human memory can be faulty

• Divergence Risk – What constitutes similarity? How do you 
characterize or quantify differences?
– We do this all the time (Engineering Judgment)
– Example COV from similar systems
– Mathematical or other structured approaches?

• Do we need new empirical knowledge?
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Data from Knowledge –
HSP Defects Example

Issue Semi-Rigid Cocure Tooling Cobond with Wet Hats

Thick/Thin 
Flanges

Flange thickness is a minor problem 
assuming semi-rigid section extends into 
bay between stiffeners. (<10% flange 
thickness error). Assume flange and skin 
under flange experience the same fiber 
volume change.

Flange edge thickness more variable.  
Flanges typically 15% thin due to tooling 
pressure. (Fiber volume change in flanges 
and skins under the flanges. Resin flowed 
out toward midbay and noodle area.)

Skin Waviness 
Beyond the 

Hat

Typically not a significant issue. A slight 
(<5%) thickness increase may be noted 
beyond stiffener flange.

Not an issue with precured skins

Shim Induced 
delamination 

at hat 
termination

Tooling is rigid enough to be pinned in 
place and prevent undercut by the shim. 
Some slight flange fiber movement over the 
shim is possible but can be trimmed back to 
the required shape

No shim required.

High/Low fiber 
volume at 

flange 
termination

Low fiber volume is common in net formed 
hats for ply pull back. Tooling approach 
does not significantly affect this.

Low fiber volume is common in net formed 
hats for ply pull back. Tooling approach 
does not significantly affect this.

End of hat 
thick or thin 

flanges

Limited intensifier droop near the end of the 
panel (5%)

Tooling flexibility will allow a roll-off or 
pinching at the hat termination. Expect the 
flanges to taper to 15% thin at tooling 
termination. If the hats are not net shape, 
this in not much of an issue.

Skin Waviness 
beyond the hat

The hat mandrel can create markoff beyond 
the end of the hat. Since this is typically a 
mating surface, shims are used to reduce 
this effect. Expect a 10% thickness 
decrease with shims.

Not an issue with precured skins

Tool mark-off
Tool mark off can be reduced by 
terminating the inner stiffening member 
before the flexible coatings.

Not an issue with precured skins

Tooling Effect on Part Quality Producibility Heuristic Data (Excerpt)
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Data from Knowledge, Analysis, and Test
Data obtained by Analysis

• Relatively fast and inexpensive
• Easiest data type for dealing with most aleatory variations
• All analysis methods require input data obtained from test

– True material scatter must be obtained from tests
– Influence on failure load can be assessed by analysis

• Prone to Epistemic uncertainty
– Is something missing in the Physics or Idealization?
– More difficult as complexity of shape or loading increases
– Surface Finish Example, Fillet Example

• Examples – Laminate Analysis, HSP pull-off.
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Data from Knowledge, Analysis, and Test
Data Obtained from Small Tests

• Test Data is the current “Gold Standard”
– Accurately Assesses Physics (of what is tested)

• More variation/error sources than generally recognized
– Prone to excessive aleatory uncertainty
– Specimen Prep and Test Setup variation not on the real aircraft
– Example Uncertainty sources (FHC) lumped with “material scatter”
– Example added test variation (OHC fixturing)

• Coupons and elements may not be representative of the actual 
structure unless excised from larger panels 
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Filled-Hole Compression (FHC) Testing
Loose Hole - 0.005 in. Tolerance
Tight Hole – 0.002 in. Tolerance

32/64/4 Layup

SIFT-Simulated Limits – Loose Hole
Test Data – Unknown Hole Clearance

SIFT-Simulated Limits – Tight hole 

SIFT Prediction – Tight Hole, 
High Stiffness and Critical Failure Props

Test Data Average – Unknown Hole

Data from Analysis
“Material Scatter” for FHC currently includes unknown hole fit

SIFT Prediction – Loose Hole, 
Low Stiffness and Critical Failure Props

Potential Scatter
Incl. Hole diameter 

tolerance

Measured Scatter 
in Test Data



35

Approved for Public Release, Distribution Unlimited

Data from Analysis
The Test Fixture and Method can significantly influence the results

0

10

20

30

40

50

60

70

SIFT-Simulated Limits
Data

25/50/25
Test Fixture 1 28/48/24

Test Fixture 2

Open-Hole Compression OHC Testing
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Data from Knowledge, Analysis, and Test
Data Obtained from Large Tests

• Large-Scale Testing
– Captures Scale-up effects (Manufacturing, Size)
– Difficult to Quantify Aleatory Uncertainty

• Few Replicates, Selected Environment/s, Single Critical Failure Mode
• Relies on building blocks
• Can often assess lower bound due to large number of repeating elements

– Very Convincing (Looks “Real”), but still prone to “idealization errors”
• Boundary Conditions, Loading, etc.

– Concorde Durability Test Anecdote

• Great for validation…
– Correct critical failure mode and location? Correct load distribution? 

Appropriate total correction for scatter? Nothing missed in physics? 

• but expensive and insufficient if used alone
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Data from Knowledge, Analysis, and Test
Combined Data

• Each data source (K,A,T) has its own unique characteristics 
and potential errors. 

• We usually have data from all 3 sources. 
– How can we combine the data for maximum benefit/confidence?

• Corollary – Given our current K, what is the most effective 
combination of A and T to gain sufficient confidence in a 
material/design while minimizing time and $$?
– Hierarchical Bayesian Approach?
– Percentile Regression and Correlation to Analysis?
– Allowables with Uncertainty?
– Other?
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First Data Combination Problem
• Composite Coupon Open-Hole Tension Test Data

– Comparatively Simple
– Several relatively-accurate analytical approaches

• Computational methods 
– The Strain Invariant Failure Theory (SIFT). 
– Point Stress Method. 

Data from Knowledge, Analysis, and Test
Combined Data
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Data from Knowledge, Analysis, and Test
Combined Data

• How can we combine the data for maximum benefit/confidence?
– Hierarchical Bayesian Approach

),( 2
sijij Ny σθ≈

),,,,,( 4321 ααααµθ iijsij xf=

),( 2
bii N σηµ ≈

),( βη ibi lamf=

),( 2
kk

Nk αα σµα ≈

),( 2
kk

Nk ββ σµβ ≈

( )132 ,Gamma S ≈σ

( )232 ,Gamma b ≈σ

),( 2
bii N κσηµ ≈

),,( δβη ibi lamf=

),( 2
δδ σµδ N≈

( )23,Gamma ≈κ

Hyperpriors are then defined for the unknown parameters in the priors
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Data from Knowledge, Analysis, and Test
Combined Data – Bayesian Approach

NIST/SEMATECH e-Handbook of Statistical Methods, 
http://www.itl.nist.gov/div898/handbook/, August 2003.
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Data from Knowledge, Analysis, and Test
Combined Data

• How can we combine the data for maximum benefit/confidence?
– Allowables with Uncertainty Bands

Goal: Predict, from computer runs simulating randomness, allowables. 

Result: predicted allowables (which are inherently probabilistic statements) with 
uncertainty bands (not inherently probabilistic) generated by the Bayesian 
hierarchical method. 

Advantage: Keeps the Bayesian analysis separated from the probability analysis. 
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•Data contain replicates => can estimate stress allowables (quantiles with 
confidence bands)

•RDCS allows simulation of physical data with sources of randomness including 
batch effects (aleatory or random uncertainty) => can simulate allowables.

•Combined data: allowables with uncertainty bands

Allowable estimate = quantile with 
confidence band. This is the 
“aleatory” content

Bayesian 
uncertainty band on 
allowable

Aleatory and 
Bayesian are kept 
separate

Data from Knowledge, Analysis, and Test
Combined Data – Allowables with Uncertainty
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Data from Knowledge, Analysis, and Test
Combined Data

• How can we combine the data for maximum benefit/confidence?
– Percentile Regression and Correlation to Analysis

• Model prediction calibration in the stochastic domain with 
pooled test data using weighting factors
– More accurate calibration of scatter, lower 10th percentile etc.

• As a second step demonstrate calibrated model prediction 
capability for a different condition not used to calibrate the 
model

• Use of results from models of  two different fidelity
– Extensive use of Approximate Point Stress Model
– SIFT model

• Plan to enhance the current LL and UL prediction to Probabilistic
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• Studied available approached for combining experimental and modeling 
data:

Bayes models
Factor models

- Parametric (normal / log-normal distribution) regression
- Non-parametric: percentile and CVaR regression 

• Effort was concentrated on Factor CVaR regression models as the most 
promising approach

• Made calculations for the dataset of experimental and modeling data 
(open hole coupon data) using CVaR regression

Data from Knowledge, Analysis, and Test
Combined Data
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• Preliminary calculation results showed that CVaR regression approach provides 
reasonable results. Three situations were considered:

- predictions of percentiles using SIFT outputs (see the next slide)
- predictions of percentiles by pooling experimental data
- predictions of percentiles by combining model and experimental data

• Formal approach has been identified for calculation of B-basis in the framework 
of CVaR regression. However, it has not jet been implemented.

Data from Knowledge, Analysis, and Test
Combined Data

In-Sample
Data

(Data for similar
Materials/layups

and model
predictions)

Out-of-Sample
Data Prediction

CVaR
Regression

Model
Prediction
Or limited

data
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Data from Knowledge, Analysis, and Test
Combined Data
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Failure Loads
Percentiles

Model Only Model + One Test Data Point

90% 8.12 1.063 ( ) 0.334 ( ) , 

  = 68.7 ,     =4.39
11.96

i i iy

CVaRα

µ µ σ σ

µ σ
∆

= + − + −

=

µ

µ
90% 3.9 0.12 ( ) 0.69 ( ) 0.92 ( ) , 

  = 73.63 ,     =4.41,      = 69.01     
7.89
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CVaRα

µ µ σ σ µ µ
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